



## Origins Space Telescope (OST) MISC Instrument Presentation

Science and Technology Team Definition Team (STDT)

Face-to Face Meeting

March 21 – 22, 2017

Itsuki Sakon (Univ. of Tokyo), Tom Roellig (NASA/Ames), Kimberly Ennico Smith (NASA/Ames) OST MISC Instrument team





### Mid-infrared Imager, Spectrometer, Coronagraph (MISC) Instrument Team Members

| MISC Instrument Team Member, Role | Name/ Affiliation                           | E-mail Address                |
|-----------------------------------|---------------------------------------------|-------------------------------|
| Science Lead                      | Kimberly Ennico Smith (NASA/Ames)           | Kimberly.Ennico@nasa.gov      |
| Instrument Lead                   | Tom Roellig (NASA/Ames)                     | Thomas.L.Roellig@nasa.gov     |
| Instrument/Science Lead           | Itsuki Sakon (U Tokyo)                      | isakon@astron.s.u-tokyo.ac.jp |
| Team Member                       | Asantha Cooray (California, Irvine)         | acooray@uci.edu               |
| Team Member                       | Deborah Padgett (GSFC)                      | deborah.l.padgett@nasa.gov    |
| Team Member                       | Joaquin Vieira (Illinois, Urbana Champaign) | jvieira@illinois.edu          |
| Team Member                       | Margaret Meixner (STScI)                    | emeixner@stsci.edu            |
| Team Member                       | Klaus Pontoppidan (STScl)                   | pontoppi@stsci.edu            |
| Team Member                       | Eric Nielesen (SETI Institute)              | nielsen@seti.org              |
| Team Member, IFU                  | Denis Burgarella (LAM)                      | jvieira@illinois.edu          |
| Team Member, IFU                  | David Le Miqnant (LAM)                      | isakon@astron.s.u-tokyo.ac.jp |





## **MISC Instrument Team Members**

List of MISC Instrument Team Members and Contact information (e-mail is suggested)

| MISC Instrument Team Member, Role                           | Name/ Affiliation                                                            | E-mail Address                    |
|-------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------|
| Team Member, PIAA Coronagraph,<br>DM, TTM, BPM              | Keigo Enya (JAXA)                                                            | enya.keigo@jaxa.jp                |
| Team Member, PIAA Coronagraph                               | Olivier Guyon (Subaru Telescope/Astro<br>Biology Center, NINS/Univ. Arizona) | oliv.guyon@gmail.com              |
| Team Member, Opt. Engineer<br>(MIR Imager and Spectrometer) | Yuji Ikeda (Photocoding)                                                     | ikeda@photocoding.com             |
| Team Member, Opt. Engineer (PIAA<br>Coronagraph)            | Naofumi Fujishiro (Teikyou University/<br>Astro-opt.)                        | naofuji@astro-opt.com             |
| Team Member, Transit Spec.                                  | Taro Matsuo (Osaka University)                                               | matsuo@iral.ess.sci.osaka-u.ac.jp |
| Team Member, 8-QPM Coronagraph                              | Naoshi Murakami (Hokkaido University)                                        | nmurakami@eng.hokudai.ac.jp       |
| Team Member; 8-QPM Coronagraph                              | Jun Nishikawa (NAOJ)                                                         | Jun.nishikawa@nao.ac.jp           |
| Team Member; immersion Grating                              | Yuki Sarugaku (U Tokyo)                                                      | sarugaku@kiso.ioa.s.u-tokyo.ac.jp |
| Team Member, DM                                             | Aoi Takahashi (JAXA)                                                         | aoi@ir.isas.jaxa.jp               |
| Team Member, Coronagraph, Transit<br>Spec.                  | Tadayuki Kotani (NAOJ)                                                       | t.kotani@nao.ac.jp                |



# Instrument Science Goals and Objectives

- Provide Mid-Infrared (6-38 μm) Capabilities to Address the Following Science Goals:
  - Transit spectroscopy of exoplanets to look for biogenic compounds (#14)
  - The rise of metals (#19)
  - Water content of Planet Forming Disks (#9)
  - The first dust (#27)
  - Connection between black hole growth and star formation over cosmic time (#21)
  - Birth of galaxies during cosmic dark ages (#26)
  - Galaxy feedback from SNe and AGN to Z~3 (#18)
  - Galaxy feedback mechanisms at z<1(#5)
  - Jupiter/Saturn Analogues (#16)





## Instrument Science Requirements

• Science Observable and Measurement Requirement

- Ten of the top fourteen science cases (#5, 9, 14, 15, 18, 19, 21, 22, 26, 27), for OST, plus the goal to provide a coronagraph to enable science case #16, require an instrument that covers < 40um. Of these cases, they can fall into a need for an imager (#14, 17), spectrometer R~few hundred (#14,16, 19, 21, 22, 26), spectrometer R~few thousand (#18) to R~few ten's thousand (#5, 9, 15) and transit spectrometer (#14).

- Most of the science targets are point sources, with three cases (#19, 21, 22) in need of an instrument to map large areas of sky.

- Science case #9 (Water content of planet-forming disks) and #15 (Direct detection of protoplanetary disk mass) requested R>25,000 for 25-200um.

- Science case #5 (Galaxy feedback mechanisms at z<1) requested R=10,000 for 10-500um.

MIR Coronagraphy;  $10^{-7}$ -- $10^{-8}$  contrast at 0.5" (~2 $\lambda$ /D at 10 $\mu$ m)

Transit observations; stability better than 10 PPM on timescale of hours to days





## Instrument Science Requirements

|     | Science Case                                                                          | Mid-Infrared<br>Imaging and<br>Spectroscopy<br>Channel | PIAACMC<br>Coronagraph<br>Channel (COR) | Transit<br>Spectroscopy<br>Channel (TRA) |
|-----|---------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|------------------------------------------|
| #14 | <ul> <li>Transit spectroscopy of exoplanets to look for biogenic compounds</li> </ul> |                                                        |                                         | Х                                        |
| #19 | •The rise of metals                                                                   | Х                                                      |                                         |                                          |
| #9  | •Water content of Planet Forming Disks                                                | Х                                                      |                                         |                                          |
| #27 | •The first dust                                                                       | Х                                                      |                                         |                                          |
| #21 | •Connection between black hole growth and star formation over cosmic time             | Х                                                      |                                         |                                          |
| #26 | •Birth of galaxies during cosmic dark ages                                            | Х                                                      |                                         |                                          |
| #18 | •Galaxy feedback from SNe and AGN to Z~3                                              | Х                                                      |                                         |                                          |
| #5  | •Galaxy feedback mechanisms at z<1                                                    | X                                                      |                                         |                                          |
| #6  | •Jupiter/Saturn Analogues                                                             |                                                        | Х                                       |                                          |





## **OST MISC Instrument Requirements**

| Technical Parameter                                                     | Technical Requirement                  | Technical Parameter               | Technical Requirement      |  |
|-------------------------------------------------------------------------|----------------------------------------|-----------------------------------|----------------------------|--|
| Wavelength Range (microns)                                              | 6um-38um                               | Photometric Accuracy              | N/A                        |  |
| Detector Bandwidth                                                      | Si:As : 6-16.3µm, Si:Sb: 15.4-38µm     | -if available                     |                            |  |
| Angular Resolution                                                      | <0.25" at 10µm                         | Transit Monitoring Cadence        | One measurement/10 minutes |  |
| Spectral Resolving Power                                                | 3-300 (6-38um), >1000 (20-38um),       | Moving Target Tracking            | Yes, up to 1"/second       |  |
|                                                                         | 10000-20000 (10-38um)                  | Sensitivity to High Dynamic Range | N/A for MISC science       |  |
| Spectral Line Sensitivity (5 $\sigma$ , 1 hr)                           | 2x10 <sup>-22</sup> W/m-2              | Targets                           |                            |  |
| Continuum Point Source1μJy (@6um, R=100)Sensitivity10μJy (@30um, R=100) | 1μJy (@6um, R=100)                     | Polarization Capabilities         | No                         |  |
|                                                                         | Broadband, Wide-area Mapping           | Yes, if 10 sq. deg is wide angle  |                            |  |
| Spectrometer Relative 3%, but 10 ppm $\lambda$ <10 $\mu$ m, 50 ppm      |                                        | Surface Brightness Sensitivity    | N/A                        |  |
| Calibration Accuracy                                                    | for $\lambda$ >10 $\mu$ m for transits | Instantaneous Field of View       | Not set by science         |  |
| Field of Regard (see note above)                                        | 4 pi                                   |                                   |                            |  |
| Field of View                                                           | Not set by science                     | Coronagraphic Contrast            | 1e-7 at 0.5" at 10μm       |  |
| Mapping Speed                                                           | Not set by science                     | Other                             |                            |  |
| Calibration / Gain stability [%]                                        | 1%                                     |                                   |                            |  |





### Mid-Infrared Imager, Spectrometer and Coronagraph (MISC)

- Mid-Infrared Imaging and Spectroscopy Channel (1)
  - Wide Field Imager (WFI-S; 6-16um, WFI-L; 15-38um, R=3-10, R=100-300)
  - Medium Resolution Spectrometer (MRS-S; 17-26um, MRS-L; 25-38um, R>1000)
  - High Resolution Spectrometer (HRS-S; 12-18um, HRS-L; 25-38um)
  - Detectors; 3 1kx1k Si:As and 3 1kx1k Si:Sb
  - Mechanisms; 2 wave front correction systems (DM + TTM), 6 Filter Wheels Others; IFU for MIR-S and MIR-L, sharing the same FOV,

WFI can be used as the slit viewer when doing spectroscopy

(2) PIAACMC Coronagraph Channel (COR)

- PIAACMC Coronagraph (COR-S; 6-16um, COR-L; 15-38um, R=3-10, R=100-300) Detectors; 1 Si:As and 1 Si:Sb

Mechanisms; Deformable Mirror + Tip-tilt Mirror, 3 Filter Wheels

(3) Transit Spectroscopy Channel (TRA)

- densified pupil spectrometer (TRA-S; 6-16um, TRA-L; 15-38um, R~100 TBD) Detectors; 1 Si:As and 1 Si:Sb 8





### OST Instrument Optical Inputs Summary (Detailed; OST/MISC Case A)

| 1  | Name                           | Mid-IR Imager Spectromet                                                       | er                                             |                                                                            | Transit Spec.                                  | Coronagraph (PIAACMC)                                       |                                                                |
|----|--------------------------------|--------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|
|    |                                | Imager/Low-Res Spec.                                                           | Medium-Res Spec.                               | High-Res Spec.                                                             |                                                |                                                             |                                                                |
| 2  | Optical Design Form            | relay/grism                                                                    | crossed echelle grating                        | immersion grating                                                          |                                                |                                                             |                                                                |
| 3  | Bandpass (um)                  | 6-38 (*1)                                                                      | 17-38 (*1)                                     | 12-18, 25-38 (*1)                                                          | 6-38                                           | 6-38 (*1)                                                   |                                                                |
| 4  | Design Wavelength (um)         |                                                                                | 20 (*2)                                        |                                                                            | N/A                                            | 20 (*2)                                                     |                                                                |
| 5  | Spectral Resolution            | 300 (*3)                                                                       | 1000 (*4)                                      | 20,000-30,000 <sup>(*5)</sup>                                              | 100                                            | 300 (*3)                                                    | K                                                              |
| 6  | Telescope Aperture (m)         | >9                                                                             | >9                                             | >9                                                                         | >9                                             | >9                                                          | MICC plane to hours                                            |
| 7  | Telescope Shape                | N/A                                                                            | N/A                                            | N/A                                                                        | N/A                                            | circular aperture without                                   | IVIISC plans to have                                           |
|    |                                |                                                                                |                                                |                                                                            |                                                | obstruction by a secondary<br>mirror nor support structures | Internal wave front                                            |
| 8  | sensitivity or PSF shape       | e N/A                                                                          | N/A                                            | N/A                                                                        | N/A                                            | PSF shape                                                   | correction System                                              |
| 9  | Telescope F/#                  | N/A                                                                            | N/A                                            | N/A                                                                        | N/A                                            | N/A                                                         | (DM + TTM)                                                     |
| 10 | On vs Off-axis pupil           | N/A                                                                            | N/A                                            | N/A                                                                        | N/A                                            | Off-axis primary aperture is<br>preferred                   |                                                                |
| 11 | Full FOV                       | 1.5 arcmin x 1.5 arcmin <sup>(*6)</sup><br>3 arcmin x 3 arcmin <sup>(*7)</sup> | 6 arcsec x 7.5 arcsec <sup>(+8</sup>           | 1.0-2.0 arcsec length                                                      |                                                |                                                             | <ul> <li>8-OPM Coronagraph<br/>(case B) may request</li> </ul> |
| 12 | Pixel Sampling                 | Airy FWHM pans >2 pixels                                                       | Airy FWHM pans >2<br>pixels <sup>(*10)</sup>   | Airy FWHM pans >2<br>pixels <sup>(*11)</sup>                               |                                                | Airy FWHM spans >4 pixels <sup>(*12)</sup>                  | 4mas pointing stability                                        |
| 13 | Detector?                      | 1kx1k Si:As(30µm∕pix)<br>1kx1k Si:Sb(18µm∕pix)                                 | 1kx1k Si:As(30µm/pix)<br>1kx1k Si:Sb(18µm/pix) | 1kx1k Si:As(30µm/pix)<br>1kx1k Si:Sb(18µm/pix)                             | 1kx1k Si:As(30µm/pix)<br>1kx1k Si:Sb(18µm/pix) | 1kx1k Si:As (30μm/pix) 1kx1k<br>Si:Sb (18μm/pix)            | (case A) requests 22mas                                        |
| 14 | Scanning?                      | N/A                                                                            | N/A                                            | N/A                                                                        | N/A                                            | N/A                                                         | pointing stability                                             |
| 15 | Image quality                  | dif                                                                            | fraction limited at 20µm                       |                                                                            | N/A                                            | Diffraction limited at 20µm                                 | aided by internal TTM                                          |
| 16 | Sensitivity                    | yes                                                                            | yes                                            | yes                                                                        | yes                                            | yes                                                         | alded by internal i fivi                                       |
| 17 | Stability                      | 22 mas during pointing aided by internal TTM <sup>(*13)</sup>                  | aided by internal TTM                          | 36mas during pointing aided by internal TTM $_{\scriptscriptstyle{(*15)}}$ | N/A                                            | 22 mas during pointing aided by<br>internal TTM (*16) (*17) | K                                                              |
| 18 | Mechanisms?                    | DM, TTM, Filter Wheels                                                         | DM, TTM                                        | DM, TTM, Filter Wheel                                                      | none                                           | DM, TTM, Filter Wheels                                      |                                                                |
| 19 | Interface                      |                                                                                |                                                |                                                                            |                                                |                                                             |                                                                |
| 20 | Special Consideration          |                                                                                |                                                |                                                                            |                                                |                                                             |                                                                |
| 21 | Detector driven beam steering? |                                                                                |                                                |                                                                            |                                                |                                                             |                                                                |
| 22 | Anything Else?                 |                                                                                |                                                |                                                                            |                                                |                                                             |                                                                |





### OST Instrument Optical Inputs Summary (notes)

- (\*1) The maximum value of 38µm is constrained by the longest wavelength covered by the Si:Sb detector.
- (\*2) The value is provided from the technical reason. The instrument requires the wavelength coverage down to 6µm (both for normal imager/ spectrometer and coronagraph). Current MEMES-DM technology will be able to correct for the wave front error caused by the primary mirror with the diffraction-limited performance at <20 micron. Further study is needed to examine whether we can employ other DM technology that is able to ease this constraint.
- (\*3) The base line is R=300 with two grisms in a filter wheel. A R=1000 variant is possible with more grisms in a filter wheel.
- (\*4) The available detector array size invokes a trade-off between the resolution power and the IFU FOV size.
- (\*5) Immersion grating for 12-18µm is technically feasible using a heritage of SPICA. A feasibility study of immersion grating for 25-38µm is needed.
- (\*6) The imaging FOV size for 6-16µm. The value is constrained by the size of the Si:As array, i.e., 1024 x 1024.
- (\*7) The imaging FOV size for 15-38µm. The value is constrained by the size of the Si:Sb array, i.e., 1024 x 1024.
- (\*8) The IFU FOV size. (4 arcsec length x 0.55 arcsec width x 9 slices for 17–26µm, 4 arcsec length x 0.7 arcsec width x 7 slices for 26–38µm)
- (\*9) 0.1 arcsec/pix for 6-16µm and 0.2 arcsec/pix for 15-38µm. The airy FWHM at 7µm (0.2 arcsec) and at 14µm (0.4 arcsec) spans 2pixels
- (\*10) 0.22 arcsec/pix for 17-26µm and 0.34 arcsec/pix for 25-38µm. The airy FWHM at 16µm (0.45 arcsec) and at 24µm (0.67 arcsec) spans 2pixels
- (\*11) 0.17 arcsec/pix for 12-18µm and 0.34 arcsec/pix for 25-38µm. The airy FWHM at 12µm (0.34 arcsec) and at 24µm (0.67 arcsec) spans 2pixels
- (\*12) 0.05 arcsec/pix for 7-16µm and 0.1 arcsec/pix for 15-38µm. The airy FWHM at 7µm (0.2 arcsec) and at 14µm (0.4 arcsec) spans 4pixels
- (\*13) The smallest slit width is 0.26 arcsec. The 3 sigma pointing stability per pointing is set to match with the 1/4 of the slit width. The 3 sigma pointing accuracy is set to match with the 1/2 of the slit width.
- (\*14) The smallest slit width is 0.80 arcsec. The 3 sigma pointing stability per pointing is set to match with the 1/4 of the slit width. No severe requirement on the poining accuracy because of the IFU.
- (\*15) The smallest slit width is 0.43 arcsec. The 3 sigma pointing stability per pointing is set to match with the 1/4 of the slit width. The 3 sigma pointing accuracy is set to match with the 1/2 of the slit width.
- (\*16) The smallest slit width is 0.26 arcsec. The 3 sigma pointing stability per pointing is set to match with the 1/4 of the slit width. The 3 sigma pointing accuracy is set to match with the 1/2 of the slit width.
- (\*17) If the 8-Octa Phase Mask (8-OPM) Coronagraph is employed, the pointing stability of 3mas during an integration time is requested. If we aim to achieve 10-7 contrast, a jitter corresponding to <0.02  $\lambda$  /D is allowed. Assuming  $\lambda$  /D=7um/9m<sup>2</sup>200mas, 0.02  $\lambda$  /D becomes 4mas.

#### (A-2) MISC/MIR Imager and Spectrometer Channel Instrument Block Diagram







### MISC Instrument Diagram or sketch (MIR Imager and Spectrometer Channel)









### MISC Instrument Diagram or sketch (MIR PIAACMC Coronagraph Channel)



Inner Working Angle (IWA) (based on Guyon et al. 2014) Obscured Circular Segmented pupils (GMT type);

 $0.72\lambda/D$  (aggressive design)

 $0.92\lambda/D$  (more conservative design)

Obscured Circular Highly Segmented pupils (E-ELT type)

 $0.8\lambda/D$  (aggressive design)

 $1.0\lambda/D$  (more conservative design)

- $\rightarrow$  0.75 0.95  $\lambda$ /D for the IWA of OST/MISC
- (for D=9m,  $\lambda$ =9 $\mu$ m, IWA is 0.15-0.20 arcsec)

#### Contrast at the IWA (based on Guyon et al. 2014) Average contrast in 0.88-3.6 $\lambda$ /D $\rightarrow$ 7.07x10<sup>-6</sup> for 10% band, 1.16x10<sup>-6</sup> for 4% band (@1.65um)

#### Cold side electronics portion

|                    | volume [m3]                 | mass[kg]                  |
|--------------------|-----------------------------|---------------------------|
| COR-S *            | 0.4 x 1.0 x 0.4             | 2.8 (optics) + 3.8(FW)    |
| COR-L *            | 0.4 x 1.0 x 0.4             | 2.8 (optics ) + 3.8 (FW ) |
| WFC (DM+TTM)       | 0.5 x 0.3 x 0.15            | 1.5                       |
| system (FOV 1'x1') |                             | (offner optics, DM + TTM) |
| Alignment Panel *  | (area: 0.95m <sup>2</sup> ) | 6.1                       |
| Cover *            |                             | 3.5                       |

\*Estimated from the results of SPICA/MSC study (MIRACLE, MIRMES and MIRHES; SPICA Focal Plane Instrument proposal). Values with higher accuracy will be obtained by June 2017 based on the results of optical designing and the design of optical mounting structures.

#### Warm side electronics portion

|             | volume [m3]       | mass | [kg] power         |
|-------------|-------------------|------|--------------------|
| COR elec. * | 0.4 x 0.3 x 0.15  | 6    | 9W                 |
| WFC elec.*  | * 0.4x 0.3 x 0.10 | 4    | 60W(TTM) + 40W(DM) |

\*Estimated from the results of AKARI/IRC-E (operating 3 detectors and 3FW) with 4 boards includingCPI/Power board, a digital and analog board for array control, and a board for peripheral contrail (3 detectors + 3 FW). Each board has a size of 40cmx30cmx5cm, a mass of 2kg and a power of 3W. In the case of AKARI/IRC-E, the mass was 8kg and the total power was 12W. \*\*Information of the WFC elec. Is estimated from the results of SPICA/SCI study. For standby mode, 16W (TTM) +10W(DM; TBD) are needed







## MISC Instrument Diagram or sketch (Transit Spectroscopic Channel)



#### division and densification part





#### foot print on detector plane

#### Cold side electronics portion

|                   | volume [m3]                 | mass[kg]      |
|-------------------|-----------------------------|---------------|
| TRA-S *           | 0.3 x 0.4 x 0.1             | 2.2 (optics)  |
| TRA-L *           | 0.3 x 0.4 x 0.1             | 2.2 (optics ) |
| Alignment Panel * | (area: 0.24m <sup>2</sup> ) | 1.6           |
| Cover *           |                             | 1.0           |

\*Estimated from the results of SPICA/MSC study (MIRACLE, MIRMES and MIRHES; SPICA Focal Plane Instrument proposal). Values with higher accuracy will be obtained by June 2017 based on the results of optical designing and the design of optical mounting structures.

#### Warm side electronics portion

|             | volume [m3]      | mass[kg] | power |
|-------------|------------------|----------|-------|
| TRA elec. * | 0.4 x 0.3 x 0.10 | 4        | 6W    |

\*Estimated from the results of AKARI/IRC-E (operating 3 detectors and 3FW) with 4 boards includingCPI/Power board, a digital and analog board for array control, and a board for peripheral contrail (3 detectors + 3 FW). Each board has a size of 40cmx30cmx5cm, a mass of 2kg and a power of 3W. In the case of AKARI/IRC-E, the mass was 8kg and the total power was 12W.

### Expected performance achieved by densified pupil spectrometer; $\sim$ a few 10<sup>-6</sup>

| Systematic noise                                                                                              | Value                |
|---------------------------------------------------------------------------------------------------------------|----------------------|
| Movement of PSF on detector intra- and inter-pixel<br>sensitivity variation by pointing jitter                | 4 x 10 <sup>-7</sup> |
| Movement of PSF on Field stop by pointing jitter                                                              | 1 x 10 <sup>-6</sup> |
| Change of PSF width on detector intra- and inter-pixel sensitivity variation by deformation of primary mirror | 5 x 10 <sup>-7</sup> |
| Fluctuation of detector gain                                                                                  | ??                   |





## Instrument Specifications, Accommodation and Interface Requirements (1)

#### **Mid-Infrared Imager and Spectrometer Channel**

Cold side portion

| MIR Imager and<br>Spectrometer | Dimensions<br>(m3) | Mass<br>(kg)            |
|--------------------------------|--------------------|-------------------------|
| WFI-S                          | 0.4 x 1.0 x 0.4    | 2.8(optics) + 3.8 (FWs) |
| WFI-L                          | 0.4 x 1.0 x 0.4    | 2.8(optics) + 3.8 (FWs) |
| MRS-S                          | 0.3 x 0.8 x 0.2    | 2.2(optics)             |
| MRS-L                          | 0.3 x 0.8 x 0.2    | 2.2(optics)             |
| HRS-S                          | 0.2 x 1.0 x 0.15   | 2.2(optics)             |
| HRS-L                          | 0.2 x 1.0 x 0.15   | 2.2(optics)             |
| WFC(DM+TTM)                    | 0.5 x 0.3 x 0.15   | 1.5                     |
| Alignment Panel                | -                  | 11.1                    |
| Cover                          | -                  | 6.0                     |
| total                          |                    | 40.6 kg                 |

#### Warm electronics portion

| MIR Imager and<br>Spectrometer | Dimension<br>[m3] | Mass<br>(kg) | Power<br>(W)        |
|--------------------------------|-------------------|--------------|---------------------|
| WFI-Electronics                | 0.4 x 0.3 x 0.15  | 6            | 9                   |
| MRS-Electronics                | 0.4 x 0.3 x 0.15  | 6            | 9                   |
| HRS-Electronics                | 0.4 x 0.3 x 0.15  | 6            | 9                   |
| WFC(DM+TTM)-<br>Electronics    | 0.4 x 0.3 x 0.10  | 4            | 60 (TTM)<br>40 (DM) |
| total                          |                   | 22 kg        | 127 W               |





## Instrument Specifications, Accommodation and Interface Requirements (2)

#### Mid-Infrared PIAACMC Coronagraph Channel Cold side portion

| PIAACMC<br>Coronagraph | Dimensions<br>(m3) | Mass<br>(kg)            |
|------------------------|--------------------|-------------------------|
| COR-S                  | 0.4 x 1.0 x 0.4    | 2.8(optics) + 3.8 (FWs) |
| COR-L                  | 0.4 x 1.0 x 0.4    | 2.8(optics) + 3.8 (FWs) |
| WFC(DM+TTM)            | 0.5 x 0.3 x 0.15   | 1.5                     |
| Alignment Panel        | -                  | 6.1                     |
| Cover                  | -                  | 3.5                     |
| total                  |                    | 24.3 kg                 |

#### Warm electronics portion

| PIAACMC<br>Coronagraph      | Dimension<br>[m3] | Mass<br>(kg) | Power<br>(W)        |
|-----------------------------|-------------------|--------------|---------------------|
| COR-Electronics             | 0.4 x 0.3 x 0.15  | 6            | 9                   |
| WFC(DM+TTM)-<br>Electronics | 0.4 x 0.3 x 0.10  | 4            | 60 (TTM)<br>40 (DM) |
| total                       |                   | 10 kg        | 109 W               |
|                             |                   |              |                     |

#### Mid-Infrared Transit Spectrometer Channel

Cold side portion

| PIAACMC<br>Coronagraph | Dimensions<br>(m3) | Mass<br>(kg) |
|------------------------|--------------------|--------------|
| TRA-S                  | 0.3 x 0.4 x 0.1    | 2.2(optics)  |
| TRA-L                  | 0.3 x 0.4 x 0.1    | 2.2(optics)  |
| Alignment Panel        | -                  | 1.6          |
| Cover                  | -                  | 1.0          |
| total                  |                    | 7.0 kg       |

#### Warm electronics portion

| PIAACMC<br>Coronagraph | Dimension<br>[m3] | Mass<br>(kg) | Power<br>(W) |
|------------------------|-------------------|--------------|--------------|
| TRA-Electronics        | 0.4 x 0.3 x 0.10  | 4            | 6            |
| total                  |                   | 4 kg         | 6 W          |





## Instrument Specifications, Accommodation and Interface Requirements (3)

MISC

- Mid-Infrared Imager and Spectrometer Channel
- PIAACMC Coronagraph Channel
- Transit Spectroscopic Channel

```
Total;
Dimension: [L] 2m x [W] 1.6m x [D] (0.1-0.4) m
(total volume; 0.85 m<sup>3</sup>)
Cold Mass: 40.6+ 24.3+7 =71.9 kg
Warm Mass: 22 + 10 + 4 = 36 kg
```

Power (Warm Electronics): 127 W + 109 W + 6 W = 242 W

## $\rightarrow$ More accurate estimate will be made by June 2017 based on the optical design analyses of MISC's three channels





## Instrument Specifications, Accommodation and Interface Requirements (4)

Operational Modes.

*Off, Standby, Coronagraphic spectral imaging, filter imaging, low-res spectroscopy, med-res spectroscopy, high-res spectroscopy, Transit spectroscopy* 

Electrical Interface

TBD VDC

·Command and Telemetry Interface

#### TBD

Mechanical Interface

#### **Details TBD**

Mechanisms

2 deformable mirror, 2 tip-tilt mirror, 10 filter/pupil wheels, all internal to the MISC

Thermal Interface

#### 4.2K only, with the exception of thermally anchoring the MISC cabling from the warm electronics

•Optical Interface:

See slides 10--15

•Requested Spacecraft Provided Services

## **ORIGINS** Guidance and Attitude Assumptions (1 of 4)



• Are there any Observing Limitations with respect to the following sources: sun, moon, bright stars, target object, background light, extended sources?

Detector reconditioning required after observations of bright sources in the FOV

- Is image stability required?
  - Is an active or passive approach anticipated?
     Wave Front Error Correction (DM operation) on orbit is made periodically TTM operation on orbit is made before the pointed observation and during the observation (TBD)
  - What is the stability requirement? (e.g., arc seconds over time in seconds) It should be stable within the TTM range of motion (1 arcmin, TBR)
- Is "tracking" of the target required?
  - What is the required pointing stability during an observation? (e.g., arc seconds over time in seconds)

~20mas aided by TTM (Case A; 1/12 of slit width at 6um)

~4mas aided by TTM (Case B; requirement from 8-OPM Coronagraph)





- Is attitude knowledge required?
  - What is the required accuracy and precision of the knowledge? (e.g., arc seconds)

*Slit position can be identified with an accuracy better than 0.1 arcsec via the slit viewer image obtained by the MISC imager* 

• Are there any assumptions about the exchange of guidance and attitude knowledge between the instrument and the observatory?

The shortest wavelength band image of Mid-Infrared Imager and Spectrometer (~6um based on current setting) can provide the positional information with an accuracy better than 0.1 arcsecond. The FOV size of the imager is 1.5arcmin by 1.5 arcmin if 1k x 1k Si:As detector is used and 3 arcmin by 3 arcmin if 2k x 2k Si:As detector is used.

## Guidance and Attitude Assumptions (3 of 4)

**Baseline Configuration** 

Obtained by slit viewer

Simultaneous operation

(WFI-S and WFI-L) with other detectors in

concern are required

20mas per exposure

20mas RMS

None

of MISC imager detectors

images.

Alternate

Configuration\*\*

**Instrument Pointing** 

Pointing Knowledge

Jitter Requirement

jitter?

**Stability Requirement** 

Any instrument generated

Requirement

Pointing Accuracy Requirement 40mas

**Requirements\*** 



This figure illustrates the definition of attitude control, knowledge and jitter (stability)

#### Notes:

Attitude

Instrument Mounting Frame

(\*) As needed to be provided by the Observatory (\*\*) Relaxed requirements to meet minimum objectives, i.e., what can you live with?







#### Notes:

(\*) As needed to be provided by the Observatory (\*\*) Relaxed requirements to meet minimum objectives, i.e., what can you live with?

## **Initial Concept of Operations** (ConOps)



DM adjustment is operated periodically.

TTM operation is made before and during the observation.

We plan to use MISC imager as a slit viewer for spectroscopy.

 $\rightarrow$  Simultaneous operation between imager and spectrometer is requested.

## Initial Concept of Operations (ConOps)

### Operational Modes, for example:

|                                     | COR-S   | COR-L             | WFI-S            | WFI-L           | MRS-S              | MRS-L      | HRS-S      | HRS-L      | TRA-S   | TRA-L   |  |
|-------------------------------------|---------|-------------------|------------------|-----------------|--------------------|------------|------------|------------|---------|---------|--|
|                                     | 6-16um  | 15-38um           | 6-16um           | 15-38um         | 17-26um            | 25-38um    | 12-18um    | 25-38um    | 6-16um  | 25-38um |  |
| Coronagraph Imaging                 | ON      |                   | Standby          |                 | Standby            |            | Standby    |            | Standby |         |  |
| Coronagraph Imaging (option 1)      | ON      |                   | ON               |                 | ON                 |            | ON         | Standby    | Standby |         |  |
| Coronagraph Imaging (option 2)      | ON ON   |                   | Standby          |                 | Standby            | ON         | Sta        | ndby       |         |         |  |
| Coronagraph Spectroscopy            | 0       | N Standby         |                  | Standby         |                    | Standby    |            | Standby    |         |         |  |
| Coronagraph Spectroscopy (option 1) | ON      |                   | С                | N               | 0                  | N          | ON         | Standby    | Standby |         |  |
| Coronagraph Spectroscopy (option 2) | 0       | ON O              |                  | N               | Stanby             |            | Standby    | ON         | Standby |         |  |
| MIR imaging                         | Standby |                   | C                | ON Standby      |                    | Standby    |            | Standby    |         |         |  |
| MIR imaging (option 1)              | Standby |                   | ON               |                 | 0                  | ON         |            | ON Standby |         | Standby |  |
| MIR imaging (option 2)              | Standby |                   | С                | ON Standby      |                    | Standby ON |            | Standby    |         |         |  |
| MIR low res spectroscopy            | Sta     | Standby ON Standb |                  | Standby Standby |                    | Standby    |            |            |         |         |  |
| MIR low res spectroscopy (option 1) | Star    | ndby              | С                | N               | 0                  | N          | ON Standby |            | Standby |         |  |
| MIR low res spectroscopy (option 2) | Star    | ndby              | C                | N               | Standby Standby ON |            | ON         | Standby    |         |         |  |
| MIR med res spectroscopy            | Sta     | ndby              | C                | N               | 0                  | N          | Standby    |            | Standby |         |  |
| MIR med res spectroscopy (option 1) | Star    | ndby              | ON ON ON Stan    |                 | Standby            | Standby    |            |            |         |         |  |
| MIR high res spectroscopy           | Sta     | ndby              | C                | N               | Standby            |            | on on      |            | Sta     | ndby    |  |
| Transit spectroscopy                | Sta     | ndby              | Sta              | ndby            | y Standby Standby  |            | ndby       | ON         |         |         |  |
| Transit Spectroscopy (option 1)     | Star    | ndby              | С                | N               | 0                  | N          | ON         | Standby    | ON      |         |  |
| Transit Spectroscopy (option 2)     | Star    | ndby              | ON Standby Stand |                 | Standby            | ON         | С          | N          |         |         |  |





## Instrument TRL's and Heritage

| Description                                                           | Subsystem/<br>Component | TRL | Heritage               |
|-----------------------------------------------------------------------|-------------------------|-----|------------------------|
| Deformable Mirror                                                     | Component               | 4   | SPICA/SCI              |
| Tip Tilt Mirror                                                       | Component               | 4   | SPICA/SCI, JWST/NIRCAM |
| 2K x 2K Si:As                                                         | Component               | 2   |                        |
| PIAACMC Coronagraph                                                   | Subsystem               | 3   |                        |
| 8-Octa Phase Mask for MIR(8-36um)                                     | Component               | 2   |                        |
| Binary Pupil Mask Coronagraph                                         | Component               | 4   | SPICA/SCI              |
| Beam Splitter, Band-pass Filters<br>(Multi-Layer Interference Filter) | Component               | 4   | SPICA/MCS              |
| Image Slicer                                                          | Subsystem               | 4   | SPICA/MCS, TMT/MICHI   |
| Immersion grating (12-18µm)                                           | Component               | 4   | SPICA/MCS              |
| Immersion grating (25-38µm)                                           | Component               | 2   |                        |
| Densified pupil spectrometer                                          | Subsystem               | 3   |                        |





## **Issues and Concerns**

- What is the OST policy on redundancy within the science instruments?
- Concern about the wire count and the parasitic heat load from all the instruments
- Will all instruments be on at the same time? Will they need to take data at the same time?
- Field of view will it include enough reference stars for the transit spectroscopy program? Will it include enough bright stars if the MISC is going to provide focal plane guidance for the observatory?
- Thermal stability needed for coronagraph?





## Back-up Slides (if any)





## Wave Front Control System

MEMS Deformable mirror; 32 actuators x 32 actuators (0.3mm between actuators) Size of DM; 10mm x 10mm  $\rightarrow$  20mm x 20mm is needed to achieve 2'x 2' FOV

Assumption:

Primary mirror diameter; D=9m Beam from the telescope; f/10  $\rightarrow$  2' x 2' FOV corresponds to 50mm x 50mm on focal plane







## **Power dissipation**

#### Power dissipation from a 1Kx1K detector array

Power dissipation from unit cell source follower amplifier and output source follower amplifier is dominant

Power dissipation from unit cell source follower amplifier; 0.72mW

Power dissipation from output source follower amplifier; 0.28mW

In total, 1 mW per detector array

#### Power dissipation from a DM mechanism

TBA (in operation/standby/off)

#### Power dissipation from a TTM mechanism

TBA (in operation/standby/off)

#### Power dissipation from a FW mechanism

TBA (in operation/standby/off)