ORIGINS
Space TelescopeFrom the Rise of Metals to
Water for Habitable Worlds

Mid-Infrared Imager, Spectrometer, Coronagraph (MISC) for the Origins Space Telescope (OST)

Itsuki Sakon (University of Tokyo), Thomas L. Reollig, Kimberly Ennico-Smith (NASA Ames) Taro Matsuo (Osaka University), Yuji Ikeda (Photocoding), Tomoyasu Yamamuro (Optcraft), Naofumi Fujishiro (Teikyo University), Keigo Enya (ISAS/JAXA), Olivier Guyon (Univ. of Arizona/ NINS ABC), Takayuki Kotani (NAOJ), Jun Nishikawa (NAOJ), Yuki Sarugaku (University of Tokyo), Aoi Takahashi (ISAS/JAXA), Takehiko Wada (ISAS/JAXA), Denis Burgarella (LAM), Origins Space Telescope (OST) /MISC Team, OST STDT

ORIGINS Space Telescope OST/MISC Study team

from Science and Technology Definition Team, Ex-Officio Non-Voting Members, Internation Ex-Officio Non-Voting Members				
Asantha Cooray	California, Irvine			
Deborah Padgett	GSFC			
Eric Nielsen	SETI Institute			
Itsuki Sakon	U Tokyo	Instrument Lead		
Joaquin Vieira	Illinois, Urbana Champaign			
Margaret Meixner	STScI			
Kimberly Ennico Smith	NASA/Ames	Science Lead		
Thomas L. Roellig	NASA/Ames	Instrument Lead		
Klaus Pontoppidan	STScI			
from NASA Ames Research	Center			
Tom Greene	NASA/Ames	MISC Transit Spectrograph Module		
Mark McKelvey	NASA/Ames	MISC Transit Spectrograph Module		
from Laboratoire d'Astrophysique de Marseille (LAM) and related Institute				
Denis Burgarella	Laboratoire d'Astrophysique de Marseille			
David Le Miqnant	Laboratoire d'Astrophysique de Marseille	Deformable Mirror, IFU, Micro Mirror Shutter		
Frederic Zamkotsian	Laboratoire d'Astrophysique de Marseille	Deformable Mirror, IFU, Micro Mirror Shutter		

Study team

from JAXA and related Institutes				
Keigo Enya	ISAS/JAXA	MISC Coronagraph Module (PIAA CMC Coronagraph)		
Taro Matsuo	Osaka University	MISC Transit Spectrograph Module (Densified Pupil Spectrogaraph)		
Yuji Ikeda	Photocoding	Optica/Structural Design of MISC Imager and Spectrometer Module		
Naofumi Fujishiro	Teikyo University	Optical/Structural Design of MISC Coronagraph module		
Tomoyasu Yamamuro	Opto Craft	Optical/Structural Design of MISC Transit Spectrograph Module		
Mitsunobu Kawada	ISAS/JAXA	Structural Design		
Takehiko Wada	ISAS/JAXA	Warm Electronix, Detectors, Deformable Mirror, Tip-Tilt Mirror, Thermal Design		
Olivier Guyon	Subaru Telescope/ABC/U Arizona	MISC Coronagraph Module (PIAA CMC Coronagraph)		
Jun Nishikawa	NAOJ	MISC Coronagraph Module		
Takayuki Kotani	NAOJ	MISC Coronagraph Module, MISC Transit Spectrograph Module		
Naoshi Murakami	Hokkaido University	MISC Coronagraph Module (8-OPM Coronagraph)		
Yuki Sarugaku	U Tokyo	Immersion grating		
Aoi Takahashi	ISAS/JAXA	MISC Coronagraph Module, Deformable Mirror		
Koji Tsumura	Tohoku University	MISC Imager and Spectrometer Module (Guider of OST)		
Satoshi Itoh	Osaka University	MISC Transit Spectrograph		
Masayuki Ido	Osaka University	MISC Transit Spectrograph		
Shohei Goda	Osaka University	MISC Transit Spectrograph		
Hiroshi Shibai	Osaka University	MISC Transit Spectrograph		
Motohide Tamura	U Tokyo	MISC Coronagraph Module		

~20 people from 8 institutes and 2 companies in Japan

Instrument Science Goals and Objectives

Providing Mid-Infrared (6-38 μm) Capabilities to Address the Following Science Goals:

- Transit spectroscopy of exoplanets to look for biogenic compounds (#14)
- The rise of metals (#19)
- Water content of Planet Forming Disks (#9)
- The first dust (#27)
- Connection between black hole growth and star formation over cosmic time (#21)
- Birth of galaxies during cosmic dark ages (#26)
- Galaxy feedback from SNe and AGN to Z~3 (#18)
- Galaxy feedback mechanisms at z<1(#5)
- Jupiter/Saturn Analogues (#16)

Instrument Science Requirements

• Science Observable and Measurement Requirement

- Ten of the top fourteen science cases (#5, 9, 14, 15, 18, 19, 21, 22, 26, 27), for OST, plus the goal to provide a coronagraph to enable science case #16, require an instrument that covers < 40um.

- Of these cases, they can fall into a need for an imager (#14, 17), spectrometer R~few hundred (#14,16, 19, 21, 22, 26), spectrometer R~few thousand (#18) to R~few ten's thousand (#5, 9, 15) and transit spectrometer (#14).

- Most of the science targets are point sources, with three cases (#19, 21, 22) in need of an instrument to map large areas of sky.

- Science case #9 (Water content of planet-forming disks) and #15 (Direct detection of protoplanetary disk mass) requested R>25,000 for 25-200um.

- Science case #5 (Galaxy feedback mechanisms at z<1) requested R=10,000 for 10-500um.

MIR Coronagraphy; 10^{-7} contrast at 0.5" (~2 λ /D at 10 μ m)

Transit observations; stability better than 10 PPM on timescale of hours to days

Compelling science (1)

- Search for bio signatures (ozone and methane) in habitable worlds.
- Characterization of thermal emission from small temperate planets. (science case [#14])

Transmission spectrum model of cold planet. Kaltenegger et al. (2013) Performance of the transit spectrograph for transmission of Trappist-1e.

Compelling science (2)

Direct imaging and characterization of true exoplanet analogs of Jupiter and Saturn, as well as ice giants at habitable temperatures (~300 K).
direct measurements of molecular abundances (NH3, CO2, O3, H2O and passibly CH4).

A Baseline design and specification of OST/MISC

(http://exoplanets.astron.s.u-tokyo.ac.jp/OST/MISC/index_misc_case_A.html)

Module	Mid-IR Imager Spectrometer Channel		Transit Channel	Coronagraph Channel	
	Imager/Low-Res Spec.	Medium-Res Spec.	High-Res Spec.	(Densified Pupil Spec.)	(PIAACMC)
	WFI-S/-L	MRS-S/-M/-L	HRS-S/-L	TRA-S/-M/-L	COR-S/-L
Bandpass (µm)	6-38	5-36	12-18, 25-38	526	6-38
Spectral Resolution	5-10 [Imager] 300 [Low-Res Spec.]	1000-1500	20,000-30,000	>100 (TRA-S, TRA-M) 300 (TRA-L)	300
Full FOV	3 arcmin x 3 arcmin [Imager]	3 arcsec x 5 arcsec [with IFU]		3 arcsec x 3 arcsec	5.5 arcsec x 5.5 arcsec
Slit for Spectroscopy	Length; 3 arcmin Width; 0.26 arcsec (WFI-SG1) 0.40 arcsec (WFI-SG2) 0.65 arcsec (WFI-LG1) 1.00 arcsec (WFI-LG2) [low-resolution Spec.]	Length; 3 arcsec (MRS-S/MRS-M/MRS-L) Width; 0.33 arcsec (MRS-S) 0.55 arcsec (MRS-M) 1.0 arcsec (MRS-L) Mum of Slices; 11 (MRS-S) 9 (MRS-M), 5 (MRS-L)	Length; 1.0 arcsec (HRS-S) 2.0 arcsec (HRS-L) Width; 0.5 arcsec (HRS-S) 1.0 arcsec (HRS-L)		Length; 1 arcmin Width; 0.26 arcsec (COR-SG1) 0.40 arcsec (COR-SG2) 0.65 arcsec (COR-LG1) 1.00 arcsec (COR-LG2)
Detectors	2kx2k Si:As (30µm∕pix) [S] 2kx2k Si:Sb (18µm∕pix) [L]	2kx2k Si:As (30μm/pix) [S] 2kx2k Si:As (30um/pix) [M] 1kx1k Si:Sb (18μm/pix) [L]	2kx2k Si:As (30μm/pix) [S] 1kx1k Si:Sb (18μm/pix) [L]	2kx2k Si:As (30µm/pix) [S] 2kx2k Si:As (30µm/pix) [M] 2kx2k Si:As (30um/pix) [L]	2kx2k Si:As (30μm/pix) [S] 1kx1k Si:Sb (18μm/pix) [L]
pixel scale	0.088 arcsec/pix	0.0615 arcsec/pix (MRS–S) 0.10 arcsec/pix (MRS–M) 0.15 arcsec/pix (MRS–L)	0.17 arcsec/pix [S] 0.34 arcsec/pix [L]	0.1 arcsec/pix	0.05 arcsec/pix (COR–S) 0.10 arcsec/pix (COR–L)
Specification (Sensitivity/ Stability/ Contrast)	Sensitivity [Imager]; 1-hour 5σ Continuum Sens . for a Point Source 0.027µJy@5µm, 0.16µJy@10µm, 0.26µJy@15µm, 0.37µJy@20µm, 0.55µJy@25µm, 0.63µJy@30µm, 0.7µJy@35µm Sensitivity [Low-Res Spec.]; 1-hour 5s Continuum Sens. for a Point Source (R=300) 0.6µJy@5µm, 1.3µJy@10µm, 4.0µJy@15µm, 5.0µJy@20µm, 8.8µJy@25µm, 11.2µJy@30µm, 37.5µJy@35µm	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Sensitivity; 1-hour 5s Line Sens. for a Point Source 1x10 ⁻²¹ W/m ² @15μm, 3x10 ⁻²¹ W/m ² @30μm	Photometric stability; better than 10 ppm on timescales of hours to days (excluding the fluctuation of detector gain)	Average contrast; 7x10 ⁻⁶ for 10% band 1x10 ⁻⁶ for 4% band in 0.88-3.6λ/D

) ORIGINS Measurement Capability (1) MISC Imager and Spectrometer Module

9

Measurement Capability (2) MISC Coronagraph Module

PIAA CMC Coronagraph (Guyon et al. 2012)

Measurement Capability

(3) MISC Transit Spectroscopy Module

Densified Pupil Spectrograph (Matsuo et al. 2016)

- Given that the gain fluctuation of detector system can be correctly calibrated, the final noise floor is determined by field-stop-variation.
- The current estimated performance is 3 to 5 ppm.
 Note that the slit-loss-variation could be mitigated because the telescope pointing jitter is symmetry to some extent (e.g., Deming et al. PASP, 2009).
- The noise floor will be determined through investigation of a prototype system, which will be built at NASA Ames in 2018.

Field-stop-loss variation. The red dotted line shows the noise floor of the transit spectrograph.

ORIGINS Optical and Mechanical Design (1) MISC Imager and Spectrometer Module

Filter Wheel #2 (φ1inchx6; triple)

Mechanical Design (3) MISC Transit Spectrometer Module

MISC in OST

(1) MISC Imager and Spectrometer; Wide Field Imager (WFI-S, WFI-L)

Parameter	Description			
1 hour 5σ Continuum Sensitivity for a point source [imaging]	0.027µJy(@5µm), 0.16µJy(@10µm), 0.26µJy(@15µm), 0.37µJy (@20µm), 0.55µJy(@25µm), 0.63µJy(@30µm), 0.7µJy(@35µm)			
1 hour 5σ Continuum Sensitivity for a point source [spectroscopy]	0.6µJy(@5µm), 1.3µJy(@10µm), 4.0µJy(@15µm), 5.0µJy (@20µm), 8.8µJy(@25µm), 11.2µJy(@30µm), 37.5µJy(@35µm)			
Resolving power [Imaging]	$\lambda/\Delta\lambda \simeq 5-10$			
Resolving power [spectroscopy]	$\lambda/\Delta\lambda \simeq 300$			
FOV	3 arcmin x 3 arcmin			
Angular resolution	0.27arcsec(@10μm), 0.5arcsec(@18.5μm), 0.65arcsec(@28μm) , 1.0arcsec(@37μm) [diffraction limited with the help of DM + TTM]			
Spectral range	6 – 38 μm			
Number of detector modules	2			
Detector format	2048 x 2048 pixels (WFI-S, WFI-L)			
Detector technology	BIB Si:As (WFI-S), BIB Si:Sb (WFI-L)			

(1) MISC Imager and Spectrometer; Medium Resolution Spectrometer (MRS-S, MRS-M, MRS-L)

Parameter	Description			
1 hour 5σ Continuum Sensitivity for a point source [imaging]	3μJy(@7μm), 10μJy(@15μm), 30μJy(@24μm), 100μJy (@32μm)			
1 hour 5 σ Line Sensitivity for a point source [spectroscopy]	1x10 ⁻²¹ Wm ⁻² (@7μm), 2x10 ⁻²¹ Wm ⁻² (@15μm), 3x10 ⁻²¹ Wm ⁻² (@24μm), 1x10 ⁻²⁰ Wm ⁻² (@32μm)			
Resolving power	$\lambda/\Delta\lambda \simeq 1000 - 1500$			
FOV	3 arcsec x 5 arcsec			
IFU Format	3arcsec length x 0.33arcsec width x 11 slices (MRS-S) 3arcsec length x 0.55arcsec width x 9 slices (MRS-M) 3arcsec length x 1.0arcsec width x 5 slices (MRS-L)			
Slit Width	0.33 arcsec (MRS-S), 0.55arcsec (MRS-M), 1.0arcsec (MRS-L)			
Angular resolution	Point sources; diffraction limited, Extended sources; limited by the slit width			
Spectral range	10 – 36 μm (goal; 5-36μm)			
Number of detector modules	2 (MRS-M, MRS-L) + 1 (MRS-S)			
Detector format	2048 x 2048 pixels (MRS-S, MRS-M), 1024 x 1024 pixels (MRS-L)			
Detector technology	BIB Si:As (MRS-S, MRS-M), BIB Si:Sb (MRS-L)			

(1) MISC Imager and Spectrometer; High Resolution Spectrometer (HRS-S, HRS-L)

Parameter	Description			
1 hour 5 σ line Sensitivity for a point source [spectroscopy]	1x10 ⁻²¹ Wm ⁻² (@15μm), 3x10 ⁻²¹ Wm ⁻² (@30μm)			
Resolving power	$\lambda/\Delta\lambda \simeq 20,000 - 30,000$			
Slit Width	0.5arcsec(HRS-S), 1.0arcsec(HRS-L)			
Angular resolution	Point Sources; diffraction limited, Extended Sources; limited by slit width			
Spectral range	12 – 18 μm (HRS-S), 25—38 μm (HRS-L)			
Number of detector modules	2			
Detector format	2048 x 2048 pixels (HRS-S), 1024 x 1024 pixels (HRS-L)			
Detector technology	BIB Si:As (HRS-S), BIB Si:Sb (HRS-L)			

(2) MISC Coronagraph (COR-S, COR-L)

Parameter	Description			
Contrast	7x10 ⁻⁶ for 10% band or 1x10 ⁻⁶ for 4% band in 0.88-3.6 λ /D			
Resolving power [Imaging]	$\lambda/\Delta\lambda \simeq 10$			
Resolving power [spectroscopy]	$\lambda/\Delta\lambda \sim 300$			
FOV	5.5 arcsec x 5.5 arcsec			
Angular resolution	0.27arcsec(@10μm), 0.5arcsec(@18.5μm), 0.65arcsec(@28μm) , 1.0arcsec(@37μm) [diffraction limited with the help of DM + TTM]			
Spectral range	6 – 16.3 μm (COR-S), 15.4—38μm (COR-L)			
Number of detector modules	2			
Detector format	2048 x 2048 pixels (COR-S), 1024 x 1024 pixels (COR-L)			
Detector technology	BIB Si:As (COR-S), BIB Si:Sb (COR-L)			

(3) MISC Transit Spectrometer (TRA-S, TRA-M, TRA-L)

Parameter	Description	
Stability	3 – 5 ppm	
Sensitivity (5s, 1 hour)	3x10 ⁻²¹ W m ⁻² (zodiacal emission limit) 3x10 ⁻²¹ W m ⁻² (readout noise limit)	
Resolving power [spectroscopy]	$\lambda/\Delta\lambda$ ~ 100 (TRA-S), ~100 (TRA-M), ~300(TRA-L)	
FOV	5.5 arcsec x 5.5 arcsec	
Spectral range	6 – 10.5 μm (TRA-S), 10—18 μm (TRA-M), 17.5-25 μm (TRA-L)	
Number of detector modules	3 (+ tip-tilt sensor if pointing jitter is monitored)	
Detector format	2048 x 2048 pixels	
Detector technology	Blocked Impurity Band (BIB) Si:As	

Technical challenges

Description	Subsystem/ Component	TRL	Heritage
Deformable Mirror	Component	3	SPICA/SCI, LAM
Tip Tilt Mirror	Component	3	SPICA/SCI, JWST/NIRCAM, TAO/MIMIZUKU
2K x 2K Si:As, 2K x 2K Si:Sb (*)	Component	4-5	JWST/MIRI, SPICA/SMI
PIAACMC Coronagraph	Subsystem	3	
8-Octa Phase Mask for MIR (8-36um)	Component	2	
Binary Pupil Mask	Component	4	SPICA/SCI
Beam Splitter, Band-pass Filters (Multi-Layer Interference Filter)	Component	5	SPICA/MCS
SiC Mirrors	Component	4	AKARI, JWST/NIRCAM
Image Slicer	Subsystem	4	SPICA/MCS, TMT/MICHI
Immersion grating (12-18µm)	Component	4	SPICA/MCS
Immersion grating (25-38µm)	Component	2	
Densified pupil spectrometer(**)	Subsystem	3	

(*) Detector stability (i.e., long-term fluctuation of gain generated in detector and readout electronics).

(**) This system provides a number of the science and reference pixels. One of the keys for improvement of the detector system is how to deal with the reference pixels. A calibration technique with the reference pixels will be developed at a testbed of a prototype system.

Summary: A fact sheet of OST/MISC

(http://exoplanets.astron.s.u-tokyo.ac.jp/OST/MISC/index_misc_case_A.html)

Module	Mid-IR Imager Spectrometer Channel		Transit Channel	Coronagraph Channel	
	Imager/Low-Res Spec.	Medium-Res Spec.	High-Res Spec.	(Densified Pupil Spec.)	(PIAACMC)
	WFI-S/-L	MRS-S/-M/-L	HRS-S/-L	TRA-S/-M/-L	COR-S/-L
Bandpass (µm)	6-38	5-36	12-18, 25-38	526	6-38
Spectral Resolution	5–10 [Imager] 300 [Low-Res Spec.]	1000-1500	20,000-30,000	>100 (TRA-S, TRA-M) 300 (TRA-L)	300
Full FOV	3 arcmin x 3 arcmin [Imager]	3 arcsec x 5 arcsec [with IFU]		3 arcsec x 3 arcsec	5.5 arcsec x 5.5 arcsec
Slit for Spectroscopy	Length; 3 arcmin Width; 0.26 arcsec (WFI-SG1) 0.40 arcsec (WFI-SG2) 0.65 arcsec (WFI-LG1) 1.00 arcsec (WFI-LG2) [low-resolution Spec.]	Length; 3 arcsec (MRS-S/MRS-M/MRS-L) Width; 0.33 arcsec (MRS-S) 0.55 arcsec (MRS-M) 1.0 arcsec (MRS-L) Mum of Slices; 11 (MRS-S) 9 (MRS-M), 5 (MRS-L)	Length; 1.0 arcsec (HRS-S) 2.0 arcsec (HRS-L) Width; 0.5 arcsec (HRS-S) 1.0 arcsec (HRS-L)		Length; 1 arcmin Width; 0.26 arcsec (COR-SG1) 0.40 arcsec (COR-SG2) 0.65 arcsec (COR-LG1) 1.00 arcsec (COR-LG2)
Detectors	2kx2k Si:As (30µm∕pix) [S] 2kx2k Si:Sb (18µm∕pix) [L]	2kx2k Si:As (30μm/pix) [S] 2kx2k Si:As (30um/pix) [M] 1kx1k Si:Sb (18μm/pix) [L]	2kx2k Si:As (30μm/pix) [S] 1kx1k Si:Sb (18μm/pix) [L]	2kx2k Si:As (30µm/pix) [S] 2kx2k Si:As (30µm/pix) [M] 2kx2k Si:As (30um/pix) [L]	2kx2k Si:As (30µm∕pix) [S] 1kx1k Si:Sb (18µm∕pix) [L]
pixel scale	0.088 arcsec/pix	0.0615 arcsec/pix (MRS–S) 0.10 arcsec/pix (MRS–M) 0.15 arcsec/pix (MRS–L)	0.17 arcsec/pix [S] 0.34 arcsec/pix [L]	0.1 arcsec/pix	0.05 arcsec/pix (COR-S) 0.10 arcsec/pix (COR-L)
Specification (Sensitivity/ Stability/ Contrast)	Sensitivity [Imager]; 1-hour 5σ Continuum Sens . for a Point Source 0.027μJy@5μm, 0.16μJy@10μm, 0.26μJy@15μm, 0.37μJy@20μm, 0.55μJy@25μm, 0.63μJy@30μm, 0.7μJy@35μm Sensitivity [Low-Res Spec.]; 1-hour 5s Continuum Sens. for a Point Source (R=300) 0.6μJy@5μm, 1.3μJy@10μm, 4.0μJy@15μm, 5.0μJy@20μm, 8.8μJy@25μm, 11.2μJy@30μm, 37.5μJy@35μm	$\begin{array}{c} \textbf{Sensitivity;} \\ 1-hour 5s \ Continuum \ Sens. \\ for a \ Point \ Source \ (R~1200) \\ 3\mu Jy@7\mum, \ 10\mu Jy@15\mum, \\ 30\mu Jy@24\mum, 100\mu Jy@32\mum \\ 1-hour 5s \ Line \ Sens. \\ for a \ Point \ Source \\ 1x10^{-21} \ W/m^2 \ @7\mum, \\ 2x10^{-21} \ W/m^2 \ @15\mum, \\ 3x10^{-21} \ W/m^2 \ @224\mum, \\ 1x10^{-20} \ W/m^2 \ @32\mum \end{array}$	Sensitivity; 1-hour 5s Line Sens. for a Point Source 1x10 ⁻²¹ W/m ² @15μm, 3x10 ⁻²¹ W/m ² @30μm	Photometric stability; better than 10 ppm on timescales of hours to days (excluding the fluctuation of detector gain)	Average contrast; 7x10 ⁻⁶ for 10% band 1x10 ⁻⁶ for 4% band in 0.88-3.6λ/D

appendix

Block diagram

MISC Imager and Spectrometer Module

Block diagram MISC Coronagraph Module

Block diagram

MISC Transit Spectrometer Module

Operating modes

[1] MIR Imaging

Pointed observation (WFI-S; ON, WFI-L; ON).

WFI-S and WFI-L share the same FOV by means of beam splitter and are operated simultaneously.

[2] MIR Low Resolution Spectroscopy (Long slit spectroscopy)

Pointed observation (WFI-S; ON, WFI-L; ON).

WFI-S and WFI-L share the same FOV by means of beam splitter and are operated simultaneously.

[3] MIR Medium Resolution Spectroscopy (IFU spectroscopy)

Pointed observation (WFI-S; ON, WFI-L; ON, MRS-S; ON, MRS-M; ON, MRS-L; ON).

MRS-S, MRS-M, and MRS-L share the same FOV by means of beam splitter and are operated simultaneously. WFI-S and WFI-L are operated in parallel to obtain the slit viewer image.

[4] MIR High Resolution Spectroscopy (Short slit spectroscopy)

Pointed observation (WFI-S; ON, WFI-L; ON, HRS-S; ON, HRS-L; ON).

HRS-S and HRS-L share the same FOV by means of beam splitter and are operated simultaneously.

WFI-S and WFI-L are operated in parallel to obtain the slit viewer image.

[5] MIR Coronagraph Imaging

Pointed observation (COR-S; ON, COR-L; ON, WFI-S; ON, WFI-L; ON).

COR-S and COR-L share the same FOV by means of beam splitter and are operated simultaneously.

WFI-S and WFI-L are operated in parallel to provide pointing knowledge

[6] MIR Coronagraph Spectroscopy

Pointed observation (COR-S; ON, COR-L; ON, WFI-S; ON, WFI-L; ON).

COR-S and COR-L share the same FOV by means of beam splitter and are operated simultaneously.

WFI-S and WFI-L may be operated in parallel to provide pointing knowledge

[7] MIR Transit Spectroscopy

Pointed observation (TRA-S; ON, TRA-M; ON, TRA-L; ON, WFI-S; ON, WFI-L; ON)

COR-S, TRA-M and COR-L share the same FOV by means of beam splitter and are operated simultaneously. WFI-S and WFI-L may be operated in parallel to provide pointing knowledge 27